BIBLIOGRAFIA

http://www.misrespuestas.com/que-es-un-ecosistema.html

http://www.eduf

http://co.kalipedia.com/ecologia/tema/equilibrio-ecosistemas.html?x=20070418klpcnaecl_63.Kes&ap=0uturo.com/educacion.php?c=3167

http://www.slideshare.net/Leitss/cmo-se-adaptan-los-seres-vivos-presentation

http://html.rincondelvago.com/ecosistema-de-agua-dulce.html

http://es.wikipedia.org/wiki/Biodiversidad

http://platea.pntic.mec.es/~jpascual/vida/vegetal/biodveg.htm

EL SUELO: DEPOSITO DE NUTRIENTES

Suelo, cubierta superficial de la mayoría de la superficie continental de la Tierra. Es un agregado de minerales no consolidados y de partículas orgánicas producidas por la acción combinada del viento, el agua y los procesos de desintegración orgánica.

Los suelos cambian mucho de un lugar a otro. La composición química y la estructura física del suelo en un lugar dado están determinadas por el tipo de material geológico del que se origina, por la cubierta vegetal, por la cantidad de tiempo en que ha actuado la meteorización, por la topografía y por los cambios artificiales resultantes de las actividades humanas. Las variaciones del suelo en la naturaleza son graduales, excepto las derivadas de desastres naturales. Sin embargo, el cultivo de la tierra priva al suelo de su cubierta vegetal y de mucha de su protección contra la erosión del agua y del viento, por lo que estos cambios pueden ser más rápidos. Los agricultores han tenido que desarrollar métodos para prevenir la alteración perjudicial del suelo debida al cultivo excesivo y para reconstruir suelos que ya han sido alterados con graves daños.

El conocimiento básico de la textura del suelo es importante para los ingenieros que construyen edificios, carreteras y otras estructuras sobre y bajo la superficie terrestre. Sin embargo, los agricultores se interesan en detalle por todas sus propiedades, porque el conocimiento de los componentes minerales y orgánicos, de la aireación y capacidad de retención del agua, así como de muchos otros aspectos de la estructura de los suelos, es necesario para la producción de buenas cosechas. Los requerimientos de suelo de las distintas plantas varían mucho, y no se puede generalizar sobre el terreno ideal para el crecimiento de todas las plantas. Muchas plantas, como la caña de azúcar, requieren suelos húmedos que estarían insuficientemente drenados para el trigo. Las características apropiadas para obtener con éxito determinadas cosechas no sólo son inherentes al propio suelo; algunas de ellas pueden ser creadas por un adecuado acondicionamiento del suelo.

2 Naturaleza del suelo

Versión para imprimir la sección
Los componentes primarios del suelo son: 1) compuestos inorgánicos, no disueltos, producidos por la meteorización y la descomposición de las rocas superficiales; 2) los nutrientes solubles utilizados por las plantas; 3) distintos tipos de materia orgánica, viva o muerta y 4) gases y agua requeridos por las plantas y por los organismos subterráneos.

La naturaleza física del suelo está determinada por la proporción de partículas de varios tamaños. Las partículas inorgánicas tienen tamaños que varían entre el de los trozos distinguibles de piedra y grava hasta los de menos de 1/40.000 centímetros. Las grandes partículas del suelo, como la arena y la grava, son en su mayor parte químicamente inactivas; pero las pequeñas partículas inorgánicas, componentes principales de las arcillas finas, sirven también como depósitos de los que las raíces de las plantas extraen nutrientes. El tamaño y la naturaleza de estas partículas inorgánicas diminutas determinan en gran medida la capacidad de un suelo para almacenar agua, vital para todos los procesos de crecimiento de las plantas.

La parte orgánica del suelo está formada por restos vegetales y restos animales, junto a cantidades variables de materia orgánica amorfa llamada humus. La fracción orgánica representa entre el 2 y el 5% del suelo superficial en las regiones húmedas, pero puede ser menos del 0.5% en suelos áridos o más del 95% en suelos de turba.

El componente líquido de los suelos, denominado por los científicos solución del suelo, es sobre todo agua con varias sustancias minerales en disolución, cantidades grandes de oxígeno y dióxido de carbono disueltos. La solución del suelo es muy compleja y tiene importancia primordial al ser el medio por el que los nutrientes son absorbidos por las raíces de las plantas. Cuando la solución del suelo carece de los elementos requeridos para el crecimiento de las plantas, el suelo es estéril.

Los principales gases contenidos en el suelo son el oxígeno, el nitrógeno y el dióxido de carbono. El primero de estos gases es importante para el metabolismo de las plantas porque su presencia es necesaria para el crecimiento de varias bacterias y de otros organismos responsables de la descomposición de la materia orgánica. La presencia de oxígeno también es vital para el crecimiento de las plantas ya que su absorción por las raíces es necesaria para sus procesos metabólicos.

3 Clases de suelo

Versión para imprimir la sección
Los suelos muestran gran variedad de aspectos, fertilidad y características químicas en función de los materiales minerales y orgánicos que lo forman. El color es uno de los criterios más simples para calificar las variedades de suelo. La regla general, aunque con excepciones, es que los suelos oscuros son más fértiles que los claros. La oscuridad suele ser resultado de la presencia de grandes cantidades de humus. A veces, sin embargo, los suelos oscuros o negros deben su tono a la materia mineral o a humedad excesiva; en estos casos, el color oscuro no es un indicador de fertilidad.

Los suelos rojos o castaño-rojizos suelen contener una gran proporción de óxidos de hierro (derivado de las rocas primigenias) que no han sido sometidos a humedad excesiva. Por tanto, el color rojo es, en general, un indicio de que el suelo está bien drenado, no es húmedo en exceso y es fértil. En muchos lugares del mundo, un color rojizo puede ser debido a minerales formados en épocas recientes, no disponibles químicamente para las plantas. Casi todos los suelos amarillos o amarillentos tienen escasa fertilidad. Deben su color a óxidos de hierro que han reaccionado con agua y son de este modo señal de un terreno mal drenado. Los suelos grisáceos pueden tener deficiencias de hierro u oxígeno, o un exceso de sales alcalinas, como carbonato de calcio.

La textura general de un suelo depende de las proporciones de partículas de distintos tamaños que lo constituyen. Las partículas del suelo se clasifican como arena, limo y arcilla. Las partículas de arena tienen diámetros entre 2 y 0,05 mm, las de limo entre 0,05 y 0,002 mm, y las de arcilla son menores de 0,002 mm. En general, las partículas de arena pueden verse con facilidad y son rugosas al tacto. Las partículas de limo apenas se ven sin la ayuda de un microscopio y parecen harina cuando se tocan. Las partículas de arcilla son invisibles si no se utilizan instrumentos y forman una masa viscosa cuando se mojan.

En función de las proporciones de arena, limo y arcilla, la textura de los suelos se clasifica en varios grupos definidos de manera arbitraria. Algunos son: la arcilla arenosa, la arcilla limosa, el limo arcilloso, el limo arcilloso arenoso, el fango arcilloso, el fango, el limo arenoso y la arena limosa. La textura de un suelo afecta en gran medida a su productividad. Los suelos con un porcentaje elevado de arena suelen ser incapaces de almacenar agua suficiente como para permitir el buen crecimiento de las plantas y pierden grandes cantidades de minerales nutrientes por lixiviación hacia el subsuelo. Los suelos que contienen una proporción mayor de partículas pequeñas, por ejemplo las arcillas y los limos, son depósitos excelentes de agua y encierran minerales que pueden ser utilizados con facilidad. Sin embargo, los suelos muy arcillosos tienden a contener un exceso de agua y tienen una textura viscosa que los hace resistentes al cultivo y que impide, con frecuencia, una aireación suficiente para el crecimiento normal de las plantas.

4 Clasificación de los suelos

Versión para imprimir la sección
Los suelos se dividen en clases según sus características generales. La clasificación se suele basar en la morfología y la composición del suelo, con énfasis en las propiedades que se pueden ver, sentir o medir —por ejemplo, la profundidad, el color, la textura, la estructura y la composición química—. La mayoría de los suelos tienen capas características, llamadas horizontes; la naturaleza, el número, el grosor y la disposición de éstas también es importante en la identificación y clasificación de los suelos.

Las propiedades de un suelo reflejan la interacción de varios procesos de formación que suceden de forma simultánea tras la acumulación del material primigenio. Algunas sustancias se añaden al terreno y otras desaparecen. La transferencia de materia entre horizontes es muy corriente. Algunos materiales se transforman. Todos estos procesos se producen a velocidades diversas y en direcciones diferentes, por lo que aparecen suelos con distintos tipos de horizontes o con varios aspectos dentro de un mismo tipo de horizonte.

Los suelos que comparten muchas características comunes se agrupan en series y éstas en familias. Del mismo modo, las familias se combinan en grupos, y éstos en subórdenes que se agrupan a su vez en órdenes.

Los nombres dados a los órdenes, subórdenes, grupos principales y subgrupos se basan, sobre todo, en raíces griegas y latinas. Cada nombre se elige tratando de indicar las relaciones entre una clase y las otras categorías y de hacer visibles algunas de las características de los suelos de cada grupo. Los suelos de muchos lugares del mundo se están clasificando según sus características lo cual permite elaborar mapas con su distribución.






La Tierra se compone de tres partes: la atmósfera, que es la capa de gases que permiten la respiración dentro del planeta; la hidrósfera, compuesta de agua que permite la vida, y la litósfera, la superficie sólida de la Tierra, que nos proporciona los nutrientes apropiados.
Bajo la litósfera y, por tanto, en el interior de nuestro planeta, hay tres capas:

La corteza terrestre es la capa externa de la Tierra; su grosor oscila entre 3 y 70 kilómetros. Se divide en corteza oceánica (ubicada bajo los océanos) y corteza continental (ubicada bajo los continentes). La primera tiene un grosor que oscila entre 3 y 15 kilómetros y está compuesta por rocas oscuras denominadas basaltos. La corteza continental, por su lado, consta de una gran variedad de rocas.
El manto es una capa rocosa y sólida que llega hasta unos 2 885 kilómetros de profundidad y que corresponde al 82 %, aproximadamente, del volumen de la Tierra.
El núcleo se compone fundamentalmente de hierro y níquel. Se divide en núcleo externo y núcleo interno: el primero es una capa metálica fundida donde la circulación de materia en el planeta en rotación genera el campo magnético de la Tierra; el núcleo interno, en tanto, es una esfera rica en hierro, que a pesar de su elevada temperatura (debido a la gran presión) se encuentra en estado sólido.
Figura 1: Esquema de las distintas capas del planeta

¿Qué es el suelo?

El suelo cubre la mayor parte de la superficie terrestre. Es parte de la corteza terrestre junto con las rocas y es, con el aire y el agua, uno de nuestros recursos naturales indispensables.
El suelo es una combinación de materia mineral y orgánica, agua y aire. La composición de los suelos varía, pero siempre están presentes los mismos cuatro componentes.
Aproximadamente la mitad del volumen total de un suelo de buena calidad está compuesta por una mezcla de roca desintegrada y descompuesta (materia mineral) y de humus, los restos descompuestos de la vida animal y vegetal (materia orgánica). La otra mitad son espacios porosos donde circula aire y agua entre las partículas sólidas. La porción mineral del suelo suele ser mucho mayor que la orgánica; el humus es un componente esencial dado que es una fuente de nutrientes vegetales que, además, determina la capacidad del suelo para retener agua. Esta aporta los nutrientes solubles, la humedad. El aire, en tanto, es la fuente de oxígeno (O2) y dióxido de carbono (CO2) necesarios para que vivan en el suelo plantas y microorganismos.
Por otro lado, las rocas que acompañan al suelo están formadas por una serie de compuestos químicos como silicatos, óxidos y carbonatos, que se encuentran unidos a algunos metales (como cobre) formando los minerales del suelo.

¿Cómo está compuesto el suelo?

1. Compuestos inorgánicos que no se disuelven y se forman como efecto de la descomposición de las rocas superficiales. El suelo posee partículas de distintos tamaños, principalmente de piedra, arcilla y grava. Las pequeñas sirven como depósito de nutrientes y también determinan en gran medida la capacidad del suelo para almacenar agua, que es, como ya sabemos, elemento vital para la vida.

Figura 2: Clasificación de los suelos

2. Los nutrientes solubles utilizados por organismos que viven en el suelo, como bacterias y vegetales.

3. Materia orgánica, viva o muerta, formada por restos vegetales y animales (aquí está la materia orgánica llamada humus). Representa entre el 2 y el 5 % del suelo superficial de las zonas húmedas, siendo menor a 0,5% en los áridos y mayor de 95% en los suelos de turba.

4. Aire y agua requeridos por las plantas y por los organismos subterráneos. Entre los gases encontramos grandes cantidades de oxígeno (metabolismo y crecimiento de las plantas), dióxido de carbono disuelto y nitrógeno. El agua o solución del suelo es esencial, ya que gracias a ella los nutrientes son absorbidos por las raíces. Su ausencia produce esterilidad en el suelo.

¿Cuáles son los tipos de suelos más comunes?

Según la composición del suelo en relación con sus minerales y componentes orgánicos, podemos determinar su grado de fertilidad. Así, únicamente viendo el color se puede determinar la variedad de suelo en el cual está. Los tipos de suelos más comunes son el pedalfero, el pedocal y el laterita.

Suelo pedalfero: se caracteriza por una acumulación de óxidos de hierro y arcillas ricas en aluminio. Los suelos están mejor desarrollados bajo la vegetación forestal, donde grandes cantidades de materia orgánica en descomposición otorgan condiciones ácidas al suelo.
Suelo pedocal: se caracteriza por una acumulación de carbonato cálcico. Este tipo de suelo se encuentra en lugares secos, con praderas y vegetación arbustiva. En zonas áridas puede haber una capa rica en calcita, denominada caliche. En esas áreas apenas penetra el agua a las profundidades, ya que es retenida por las partículas del suelo de la superficie hasta que se evapora.
Suelo laterita: este tipo de suelo se presenta en climas cálidos y húmedos. Contiene una alta concentración de óxidos de hierro y aluminio. El primero proporciona un color rojo característico. La actividad bacteriana es muy elevada en los trópicos y prácticamente no hay humus. Las condiciones antes señaladas indican que este tipo de suelo no es apto para el cultivo agrícola.
Minerales

¿Qué son los minerales?
Un mineral es una sustancia de origen natural con una composición química característica. La mayoría de los metales se encuentran como compuestos inorgánicos y formando la estructura del suelo o en ríos o lagos, donde sedimentan hacia capas inferiores de la litósfera.
Un depósito mineral que goza con concentraciones adecuadas para su extracción es denominado mena, en el ámbito de la economía.

EL AGUA :SUSTANCIA IMPORTANTE EN EL ECOSISTEMA

Vida de agua dulce, plantas, animales y otras formas de vida adaptadas a vivir y reproducirse en las corrientes de los arroyos y los ríos y en las aguas inmóviles de los lagos y los estanques. En las distintas zonas de estos hábitats, pueden vivir una increíble variedad de especies; en este artículo se describen algunas de ellas.

Hábitats lóticos

Los hábitats de las corrientes de agua o lóticos, incluyen todas las partes del curso de los ríos: los arroyos y manantiales de su cabecera, la zona central del valle, con sus estanques y sus rápidos, la zona de la llanura aluvial, y los estuarios en los que vierten sus aguas al mar.

Las especies que viven en arroyos de corriente rápida muestran adaptaciones que les permiten mantener su posición en el agua. Algunas, como la trucha común y ciertas ninfas de efímeras, tienen formas hidrodinámicas, lo que reduce su resistencia a la corriente. Otros organismos, como las ninfas de efímera y de los plecópteros, tienen cuerpos aplanados, lo que les permite esconderse bajo las piedras y aferrarse a ellas. Hay otros, como las larvas de los simúlidos, que se fijan a las rocas por medio de garfios y ventosas; ciertas larvas de frigánea se construyen vainas con pequeños guijarros, que anclan sobre las rocas. Entre las plantas, las variedades representativas incluyen el musgo de agua, que se aferra a las rocas y se alinea con la corriente. Algunas algas crecen adheridas a las rocas y están cubiertas con una capa gelatinosa para reducir la fricción del agua.

Donde se ensancha el cauce, permitiendo que las aguas de los márgenes fluyan más despacio, este tipo de organismos son reemplazados por otros, como la perca, el pez luna, e insectos acuáticos nadadores, adaptados a corrientes más lentas y a temperaturas más altas. Puede desarrollarse plancton vegetal, y aparecer plantas acuáticas con raíz a lo largo de las riberas.

La mayor parte de las corrientes de agua dependen de los ecosistemas terrestres adyacentes como fuente primaria de energía (véase Ecología). Las hojas y la madera de la vegetación de las orillas, una vez reblandecidas por bacterias y hongos, son consumidas por un grupo de insectos acuáticos llamados trituradores. Las partículas de materia orgánica, junto con fragmentos de algas desprendidos de las rocas por otro grupo denominado raspadores, son extraídos de la corriente por los recolectores. Uno de estos es la frigánea, que teje una red subacuática. De todos ellos se alimentan los peces e insectos depredadores.

Hábitats lénticos

Los ecosistemas de las aguas inmóviles, llamados lénticos (los estanques y lagos de agua dulce), comprenden una zona de aguas poco profundas a lo largo de la costa; una zona de aguas abiertas superficiales que se extiende hasta la profundidad en la que la luz resulta insuficiente para que pueda producirse la fotosíntesis; una zona de aguas profundas sobre las que flota el agua más caliente y menos densa; y una zona de fondo compuesta de sedimentos y fango, donde se produce la descomposición.

La zona de aguas poco profundas, las marismas, están dominadas por la vegetación sumergida, flotante y emergente, entre la cual abunda la vida. Por ejemplo, bajo una verde capa de lentejas de agua flotantes viven desmidiáceas, protozoos, diminutos crustáceos, hidras, y caracoles. Las larvas de libélula, los coleópteros buceadores, los lucios y los peces sol son algunos de los organismos que encuentran alimento y protección en los lechos vegetales. En los carrizales y otras plantas emergentes anidan y se alimentan especies como los mirlos, los chochines de pantano, las ratas almizcleras, y los topillos de agua.

En las aguas abiertas, el plancton vegetal y las algas verdes filamentosas aportan la mayor parte de la energía usada por los ecosistemas lénticos. En esta capa rica en alimentos, el plancton animal, rotíferos, copépodos y cladóceros, se alimenta del plancton vegetal.

En la zona de aguas profundas, la vida se ve afectada por la temperatura y la cantidad de oxígeno disuelto. En los lagos fríos donde, el oxígeno es suficiente, las truchas y el plancton pueden habitar en las profundidades. En la zona del fondo, el barro y el agua adyacentes carecen a menudo de oxígeno debido a la descomposición de la materia orgánica. La vida del fondo puede incluir efímeras cavadoras, larvas de quironómido y protozoos, que se alimentan de la materia orgánica y son capaces de vivir con poco oxígeno.

La vida en lagos y estanques

El agua inmóvil, en general más cálida que la de los ríos y arroyos, puede sustentar muchos tipos de animales y plantas. El fondo de los estanques y de las aguas poco profundas de los lagos sustentan plantas y larvas enterradas, que constituyen el alimento de animales como ranas y peces. En aguas más profundas, donde escasea el oxígeno, sólo viven animales adaptados al frío. El plancton crece en todos los niveles.

La vida en ríos y arroyos

(Izq.): En las zonas de cabecera, los animales deben tolerar tanto el frío como la turbulencia de la corriente. Algunos organismos, en especial los más pequeños, tienen ganchos y ventosas para fijarse a las rocas; la mayoría tiene forma hidrodinámica para evitar ser arrastrados. (Dcha.): Los organismos de natación libre viven en las zonas de poca corriente, en especial en los tramos bajos, el curso lento de la corriente, especialmente el tramo bajo, donde la anchura del cauce produce áreas de aguas lentas en las orillas.

Ecosistemas

La cantidad, variaciones y regularidad de las aguas de un río son de enorme importancia para las plantas, animales y personas que viven a lo largo de su curso. Los ríos y sus llanuras de inundación sostienen diversos y valiosos ecosistemas, no sólo por la capacidad del agua dulce para permitir la vida sino también por las abundantes plantas e insectos que mantiene y que forman la base de las cadenas tróficas. En el cauce de los ríos, los peces se alimentan de plantas y los insectos son comidos por aves, anfibios, reptiles y mamíferos. Fuera del cauce, los humedales producidos por filtración de agua e inundación albergan entornos ricos y variados, no sólo importantes para las especies autóctonas, sino también para las aves migratorias y los animales que utilizan los humedales como lugar de paso en sus migraciones estacionales. Los ecosistemas de los ríos (fluviales) pueden considerarse entre los más importantes de la naturaleza y su existencia depende totalmente del régimen de los mismos. Por lo tanto, se debe tener gran cuidado para no alterar este régimen al actuar sobre el río y su cuenca, ya que una gestión poco responsable de los recursos del agua o su sobreexplotación pueden tener efectos desastrosos para el ecosistema de ribera.

El ciclo del agua

Los ríos forman parte de la circulación general del agua o ciclo hidrológico. La presencia de grandes cantidades de agua es lo que distingue a la Tierra de los otros planetas conocidos y lo que hace aquí posible la vida. En la Tierra hay más de 1.400 millones de km3 de agua que son continuamente reciclados y transformados a su paso por los océanos, la atmósfera, la biosfera y por los suelos y las rocas de la geosfera.

Si se mide la cantidad de agua de cada uno de los componentes del ciclo hidrológico, la de los ríos sólo representa una pequeña parte del sistema. La mayor parte es agua salada, ya que los océanos contienen el 96,5% del agua terrestre. El 3,5% restante es agua dulce, concentrada principalmente en las reservas de las regiones frías (69% del total), como los casquetes polares, glaciares, y en forma de nieve; o en el subsuelo, en forma de agua subterránea (30% del total). Los lagos contienen un 0,25%, mientras que la atmósfera acumula el 0,4%. El agua de los ríos sólo suma un reducido 0,006% del agua dulce de la Tierra, pero tiene una relevancia que compensa su escaso volumen. Ello se debe a que el agua de los ríos, al fluir debido a la gravedad, erosiona y modela el paisaje, al transportar y depositar rocas y sedimentos. Otra razón es que el agua constituye un recurso natural renovable, tanto para los humanos como para los animales y las plantas.

El ciclo hidrológico se inicia cuando el agua se evapora desde los mares y océanos a la atmósfera. El agua atmosférica regresa a la Tierra en forma de precipitaciones de lluvia, granizo, o nieve. La cantidad de agua que llega al suelo depende de varios factores, pero, en general, las tierras elevadas reciben más agua que las bajas; en las montañas nacen la mayoría de los ríos. Las plantas, sobre todo los árboles, captan parte de las precipitaciones que se vuelven a evaporar directamente, incluso antes de llegar al suelo. La tala de árboles y su sustitución por cultivos (deforestación) aumenta la velocidad y la cantidad de agua de lluvia que llega al terreno, con la consiguiente erosión puntual de los suelos y el riesgo de inundaciones.

Las precipitaciones que alimentan el terreno se infiltran en los suelos, percolando hasta la capa freática para convertirse en agua subterránea; o bien, fluyen lentamente, ladera abajo, en forma de arroyada en surcos. No toda el agua que cae durante las grandes tormentas es capaz de filtrarse; en aquellos lugares en los que por la acción humana se ha compactado la superficie del suelo o ha sido cubierta de cemento, o en aquellos lugares ya saturados de agua, el exceso de líquido se acumula en la superficie y fluye ladera abajo, hasta el curso de agua más próximo, en forma de arroyada en manto. El agua que llega a los ríos en arroyada, ya sea en surcos o en manto, recibe el nombre de escorrentía. El río completa el ciclo hidrológico al recoger la escorrentía de su zona de influencia (cuenca de drenaje) y al llevarla de vuelta a los océanos o lagos, para reemplazar así el agua que se evapora.

El régimen hidrológico

La cantidad de agua que circula por un río (caudal) varía en el tiempo y en el espacio. Estas variaciones definen el régimen hidrológico de un río. Las variaciones temporales se dan durante o justo después de las tormentas; la escorrentía que produce la arroyada incrementa el caudal. En casos extremos se puede producir la crecida cuando el aporte de agua es mayor que la capacidad del río para evacuarla, desbordándose y cubriendo las zonas llanas próximas (llanura de inundación). El agua que circula bajo tierra, como la de la arroyada en surcos o el agua subterránea, tarda mucho más en alimentar el caudal del río y puede llegar a él días, semanas o meses después de la lluvia que generó la escorrentía. El caudal de un río aportado por las aguas subterráneas recibe el nombre de caudal basal, que fluctúa en función de la altura del nivel freático. Si no llueve en absoluto o la media de las precipitaciones es inferior a lo normal durante largos periodos de tiempo, el río puede llegar a secarse cuando el aporte de agua de lluvia acumulada en el suelo y el subsuelo reduzca el caudal basal a cero. Esto puede tener consecuencias desastrosas para la vida del río y sus riberas y para la gente que dependa de éste para su suministro de agua.

La variación espacial se da porque el caudal del río aumenta aguas abajo, a medida que se van recogiendo las aguas de la cuenca de drenaje y los aportes de las cuencas de otros ríos que se unen a él como tributarios. Debido a esto, el río suele ser pequeño en las montañas, cerca de su nacimiento, y mucho mayor en las tierras bajas, próximas a su desembocadura. La excepción son los desiertos, en los que la cantidad de agua que se pierde por la filtración o evaporación en la atmósfera supera la cantidad que aportan las corrientes superficiales. Por ejemplo, el caudal del Nilo, que es el río más largo del mundo, disminuye notablemente cuando desciende desde las montañas del Sudán y Etiopía, a través del desierto de Nubia y de Sahara, hasta el mar Mediterráneo.

TIPOS DE ADAPTACIONES Y EXTINCIONES

Hay 3 tipos de adaptación al medio:

  • Morfológica o estructural: Como la sustitución de hojas por espinas en los cactus para evitar la pérdida de agua.
  • Fisiológica o funcional: Como las glándulas de sal en las iguanas marinas para eliminar el exceso de sal en su cuerpo.
  • Etológica o de comportamiento: Como la danza de cortejo de muchas aves, para atraer a la hembra y reproducirse.

    En biología y ecología, extinción es la desaparición de todos los miembros de una especie o un grupo de taxones. Se considera extinta a una especie a partir del instante en que muere el último individuo de esta. Debido a que su rango de distribución potencial puede ser muy grande, determinar ese momento puede ser dificultoso, por lo que usualmente se hace en retrospectiva. Estas dificultades pueden conducir a fenómenos como el Taxon Lazarus, en el que una especie que se presumía extinta reaparece abruptamente tras un período de aparente ausencia. En el caso de especies que se reproducen sexualmente, la extinción es generalmente inevitable cuando sólo queda un individuo de la especie, o únicamente individuos del mismo sexo.

    A través de la evolución, nuevas especies surgen a través de la especiación, así como también otras especies se extinguen cuando ya no son capaces de sobrevivir en condiciones cambiantes o frente a otros competidores. Normalmente, una especie se extingue dentro de los primeros 10 millones de años posteriores a su primer aparición,fósiles vivientes, sobreviven prácticamente sin cambios durante cientos de millones de años. La extinción es histórica y usualmente un fenómeno natural. Se estima que cerca de un 99,9% de todas las especies que alguna vez existieron están actualmente extintas. aunque algunas especies, denominadas

    Antes de la dispersión de los humanos a través del planeta, la extinción generalmente ocurría en continuo bajo índice, y las extinciones masivas eran eventos relativamente raros. Pero aproximadamente 100.000 años atrás, y en coincidencia con el aumento de la población y la distribución geográfica de los humanos, las extinciones se han incrementado a niveles no vistos antes desde la extinción masiva del Cretácico-Terciario. A esto se le conoce como la extinción masiva del Holoceno, y se estima que para el año 2100 la cantidad de especies extintas podría alcanzar altas cotas, incluso la mitad de todas las especies que existen actualmente.

ADAPTACIONES DE LOS SERES VIVOS

¿Cómo se adaptan los Seres Vivos?

Aprendamos el concepto de adaptación. Las adaptaciones le permiten a un organismo estar más capacitado para enfrentar y sobrevivir en su hábitat.Existen adaptaciones para la alimentación de algunos animales. • Los mamíferos carnívoros tienen los dientes filosos y generalmente grandes para matar y desgarrar a sus presas. Por ejemplo: el león y el puma. También hay algunos reptiles como el cocodrilo que también tienen estas característica. Las aves carnívoras tienen el pico fuerte para cortar sus presas. Las aves que necesitan atrapar a sus presas en vuelo, como el águila, además tienen garras fuertes. Los animales herbívoros tienen dientes menos filosos y más adaptados para moler. Por ejemplo: Las garras de las aves herbívoras son menos desarrolladas y sus picos tienen formas diferentes, de acuerdo a la parte de las plantas que comen. El picaflor tiene un pico largo y fino para alcanzar el néctar de las flores. El loro tiene un pico grueso y curvo con el que parte las semillas que come. Existen también adaptaciones en distintos ambientes. La vida en el agua.... Hay miles de especies animales que habitan bajo el agua. Todos están adaptados al ambiente acuático.

DERIVA CONTINENTAL ,DIVERSIDAD Y CLIMA

Deriva continental y clima


Deriva continental y clima

La posición de los continentes resulta un factor determinante en la conformación del clima mundial. La deriva continental es un proceso sumamente lento, por lo que la posición de los continentes fija el comportamiento del clima durante millones de años. Hay dos aspectos a tener en cuenta. Por una parte, las latitudes en las que se concentra la masa continental: si las masas continentales están situadas a nivel de latitudes bajas, habrá pocos glaciaresclima. continentales y, en general, temperaturas medias menos extremas. Asimismo, si los continentes se hallan muy fragmentados habrá menos continentalidad. Estos aspectos pueden contribuir de varias formas contradictorias en el clima .


Divercidad

La multitud de formas que presentan los organismos vivos apenas puede ser abarcada en su conjunto. Ningún individuo es exactamente igual a otro; incluso dentro de comunidades estrechamente emparentadas se encuentra una fuerte variación, ello es particularmente perceptible en lo que respecta al hombre, animales y plantas, en relación con ello es posible distinguir una gran multitud de estirpes, se calcula que actualmente existen unas 500.000 especies vegetales y más de dos millones de especies animales.

Entendemos por diversidad biológica o biodiversidad la variedad de formas de vida que habitan la tierra.

La diversidad se compone no sólo de un elemento, sino de la variación y la abundancia relativa de especies de modo que las medidas de diversidad así consideran estos dos factores: riqueza de especies, que es el número de especies; y uniformidad, esto es, en qué medida son abundantes las poblaciones de cada especie.

Se pueden clasificar según los niveles de organización en:

  • Diversidad genética.
  • Diversidad de especies.
  • Diversidad de ecosistemas.
  • Diversidad paisajística.


DIVERCIDAD BIOLOGICA

Biodiversidad también llamada diversidad biológica, es el términopor el que se hace referencia a la amplia variedad de seres vivos sobre la Tierra y los patrones naturales que la conforman, resultado de miles de millones de años de Evolución según procesos naturales y también, de la influencia creciente de las actividades del ser humano. La biodiversidad comprende igualmente la variedad de ecosistemas y las diferencias genéticas dentro de cada especie que permiten la combinación de múltiples formas de vida, y cuyas mutuas interacciones y con el resto del entorno, fundamentan el sustento de la vida sobre el planeta.

FLUJO DE ENERGIA Y EQUILIBRIO EN LOS ECOSISTEMAS

La fuente última de energía que ingresa en un ecosistema es el Sol. Los productores convierten una pequeña proporción -aproximadamente 1 a 3%- de energía solar en energía química. Los consumidores primarios (herbívoros) comen a los productores primarios. Un carnívoro que come a un herbívoro es un consumidor secundario, y así sucesivamente. En promedio, aproximadamente el 10% de la energía transferida en cada nivel trófico es almacenada en tejido corporal; del 90% restante, parte se usa en el metabolismo del organismo y parte no se asimila. Esta energía no asimilada es utilizada por los detritívoros y, finalmente, por los descomponedores.

El equilibrio de los ecosistemas

Un ecosistema está en equilibrio cuando es estable, es decir, cuando no cambia o cambia muy poco con el tiempo. Para que un sistema esté en equilibrio no deben producirse grandes cambios en las condiciones ambientales (clima, suelo y agua), el número de individuos ha de mantenerse constante y no deben existir factores externos (contaminación, tala de árboles) que alteren el ecosistema.

Si por cualquier razón, se rompe el equilibrio de un ecosistema, este puede desaparecer y ser sustituido por otro.